Mathematics Grade 8 Probability Questions and Answers for Revision

Mathematics Grade 8 Probability Questions and Answers for Revision

 JOIN OUR WHATSAPP GROUP. CLICK HERE

Mathematics Grade 8 Probability Questions and Answers for Revision

 

 

Solution:

Total number of trials = 300 (Since there are 300 students all together).

Number of times a cricket player is chosen = 95 (Since 95 students play cricket).

Number of times a football player is chosen = 120.

Number of times a volleyball player is chosen = 80.

Number of times a student is chosen who plays no games = 5.

(i) Therefore, the probability of getting a player who plays volleyball

= Number of Times a Volleyball Player can be ChosenTotal Number of Trials

 

80300

 

415

.

(ii) The probability of getting a player who plays either cricket or volleyball

= Number of Times a Cricket or a Volleyball Player can be ChosenTotal Number of Trials

 

95+80300

 

175300

 

712

.

 

(iii) The probability of getting a player who plays neither football nor volleyball = Number of Times a Student can be Chosen who do not Play Football or VolleyballTotal Number of Trials

 

30012080300

 

100300

 

13

.

2. The blood group of 60 students of a class recorded as below.

 

Blood GroupABABO
Number of Students12201018

A student of the class is selected at random.

(i) What is the probability that the selected student has blood group O?

(ii) What is the probability that the selected student does not have blood group O?

Solution:

(i) Total number of trials = 60. [Since, there are 60 different students).

Number of students having blood group O = 18.

So, the probability of the student’s blood group being O

= Frequency of Favourable TrialsTotal Number of Trials

 

= Number of Students having Blood Group OTotal Number of Trials

 

1860

 

310

.

 

(ii) Total number of trials = 60. [Since, there are 60 different students).

Number of students not having blood group O = Total Number of Students – Number of Students having Blood Group O = 60 – 18 = 42.

So, the probability of the student’s blood group being different from O

= Number of Students not having Blood Group OTotal Number of Trials

 

4260

 

710

.

Note: Probability of the student’s blood group not being O = 310

+ 710

= 1.

 

3. In a test of 100 marks, the marks scored by the students of a class are given below.

 

Probability Questions Answers

1Save

A student of the class is selected at random. Find the probability that the student has scored

(i) less than 30

(ii) at least 60

(iii) not less than 80.

Solution:

(i) Total number of trials = 80 [Since there are 80 students all together].

Number of students scoring less than 30 = Cumulative frequency of the interval 20 – 30 = 1 + 3 + 6 = 10.

So, the probability of the student scoring less than 30

= Frequency of Favourable TrialsTotal Number of Trials

= Number of Students Scoring Less than 30Total Number of Students

 

1080

 

18

.

 

(ii) Total number of trials = 80.

Number of students scoring at least 60 = Number of students scoring more than or equal to 60

= 12 + 5 + 4 + 1 (= Sum of frequencies of the intervals 60 – 70, 70 – 80, 80 – 90, 90 – 100)

= 22.

So, the required probability = Frequency of Favourable TrialsTotal Number of Trials

 

= Number of Students Scoring at least 60Total Number of Students

 

2280

 

1140

.

(iii) Total number of trials = 80.

Number of students scoring at not less than 80 = Number of students scoring to least 80

= 4 + 1 (= Sum of frequencies of the intervals 80 – 90 and 90 – 100)

= 5.

Therefore, the required probability = Number of Students Scoring not less than 80Total Number of Students

 

580

 

116

.

 

4. A bag contains 8 red balls and some white balls. If the probability of drawing a white ball is half of the probability of drawing a red ball then find the number of white balls in the bag.

Solution:

Let the number of white balls be n.

The number of red balls = 8.

Therefore, the possible number of outcomes = n + 8.

Now, the probability of drawing a white ball = nn+8

.

The probability of drawing a red ball = 8n+8

.

Now, from question,

nn+8

= 12nn+8

 

or, n = 4.

So, number of white balls in the bag is 4.

 

5. A box contains 90 discs numbered 1 to 90. One disc is drawn at random from the box. What is the probability that is bears

(i) a two-digit number

(ii) a perfect square

(iii) a multiply of 5

(iv) a number divisible by 3 and 5.

Solution:

(i) Total number of possible outcomes = 90 (Since the disks are numbered from 1 to 90).

Number of favourable outcomes of the event E

= Number of two-digit numbers from 1 to 90

= 90 – 9 = 81 (Since all are two-digit numbers except 1 to 9)

Therefore, P(E) = Number of Favourable Outcomes of the Event ETotal Number of Possible Outcomes

 

8190

 

910

.

 

(ii) Total number of possible outcomes = 90.

Number of favourable outcomes of the event F

= Number of perfect squares from 1 to 90

= 9   [Since 1, 4, 9, 16, 25, 36, 49, 64 and 81 are perfect squares).

Therefore, by definition, P(F) = 990

 

= 110

.

 

(iii) Total number of possible outcomes = 90.

Number of favourable outcomes of the event G

= Number of multiples of 5 among numbers from 1 to 90

= 18   [Since 5 × 1, 5 × 2, 5 × 3, ….,  5 × 18 are multiple of 5).

Therefore, by definition, P(G) = 1890

 

= 15

.

 

(iv) Total number of possible outcomes = 90.

Number of favourable outcomes of the event H

= Number of numbers divisible by 3 and 5 from 1 to 90

= Number of numbers divisible by 15 from 1 to 90

= 6  [Since 15 × 1, 15 × 2, 15 × 3, ….,  15 × 6 are divisible by 15).

Therefore, by definition, P(H) = 690

 

= 115

How to Pass Grade 9 with distinctions

One of the most significant accomplishments in your academic career is passing matric. It provides access to a wide range of post secondary options and employment possibilities. Use our best study advice to complete your matriculation, and you’ll succeed with flying colors.

READ => How to get your matric results step by step

  1. Attend class 
  2. Ask questions 
  3. Make notes 
  4. Study 
  5. Practise 
  6. Study groups 
  7. Extra class 
  8. Motivation 
  9. Complete assessments 
  10. Prepare for the Exams in due time

Download Past Exam Papers & Memo per Province

 

To Receive Quick Updates Join our Social Media Platforms

Telegram Channel https://t.me/Ajiraforumsouthafrica

WhatsApp Group:https://chat.whatsapp.com/FqxNrkBVlqv0jprAM5kZwt

LinkedIn : https://www.linkedin.com/in/ajira-forum-7a254597/
Facebook Page : https://www.facebook.com/profile.php?id=100063704404668

twitter : https://twitter.com/Ajiraforums

Instagram: https://www.instagram.com/ajiraforum_/

Pinterest:  https://in.pinterest.com/AJIRAFORUM/

 JOIN OUR TELEGRAM CHANNEL. CLICK HERE

Be the first to comment

Leave a Reply